
An Elo-like System for Massive Multiplayer Competitions
Aram Ebtekar

Vancouver, BC, Canada

aramebtech@gmail.com

Paul Liu

Stanford University

Stanford, CA, USA

paul.liu@stanford.edu

ABSTRACT
Skill estimation mechanisms, colloquially known as rating sys-

tems, play an important role in competitive sports and games. They

provide a measure of player skill, which incentivizes competitive

performances and enables balanced match-ups. In this paper, we

present a novel Bayesian rating system for contests with many

participants. It is widely applicable to competition formats with

discrete ranked matches, such as online programming competitions,

obstacle courses races, and video games. The system’s simplicity

allows us to prove theoretical bounds on its robustness and runtime.

In addition, we show that it is incentive-compatible: a player who
seeks to maximize their rating will never want to underperform.

Experimentally, the rating system surpasses existing systems in

prediction accuracy, and computes faster than existing systems by

up to an order of magnitude.
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1 INTRODUCTION
Competitions, in the form of sports, games, and examinations, have

been with us since antiquity. Many competitions grade perfor-

mances along a numerical scale, such as a score on a test or a

completion time in a race. In the case of a college admissions exam

or a track race, scores are standardized so that a given score on

two different occasions carries the same meaning. However, in

events that feature novelty, subjectivity, or close interaction, stan-

dardization is difficult. The Spartan Races, completed by millions

of runners, feature a variety of obstacles placed on hiking trails

around the world [11]. Rock climbing, a sport to be added to the

2020 Olympics, likewise has routes set specifically for each com-

petition. DanceSport, gymnastics, and figure skating competitions
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have a panel of judges who rank contestants against one another;

these subjective scores are known to be noisy [32]. In all these cases,

scores can only be used to compare and rank participants at the

same event. Players, spectators, and contest organizers who are

interested in comparing players’ skill levels across different compe-

titions will need to aggregate the entire history of such rankings. A

strong player, then, is one who consistently wins against weaker

players. To quantify skill, we need a rating system.

Good rating systems are difficult to create, as they must bal-

ance several mutually constraining objectives. First and foremost,

rating systems must be accurate, in that ratings provide useful pre-

dictors of contest outcomes. Second, the ratings must be efficient

to compute: within video game applications, rating systems are

predominantly used for matchmaking in massively multiplayer

online games (such as Halo, CounterStrike, League of Legends,

etc.) [25, 29, 36]. These games have hundreds of millions of players

playing tens of millions of games per day, necessitating certain

latency and memory requirements for the rating system [12]. Third,

rating systems must be incentive-compatible: a player’s rating
should never increase had they scored worse, and never decrease

had they scored better. This is to prevent players from regretting

a win, or from throwing matches to game the system. Rating sys-

tems that can be gamed often create disastrous consequences to

player-base, potentially leading to the loss of players [3]. Finally,

the ratings provided by the system must be human-interpretable:

ratings are typically represented to players as a single number en-

capsulating their overall skill, and many players want to understand

and predict how their performances affect their rating [21].

Classically, rating systems were designed for two-player games.

The famous Elo system [18], as well as its Bayesian successors

Glicko and Glicko-2, have been widely applied to games such as

Chess and Go [21–23]. Both Glicko versions model each player’s

skill as a real random variable that evolves with time according

to Brownian motion. Inference is done by entering these variables

into the Bradley-Terry model [14], which predicts probabilities of

game outcomes. Glicko-2 refines the Glicko system by adding a

rating volatility parameter. Unfortunately, Glicko-2 is known to

be flawed in practice, potentially incentivizing players to lose in

what’s known as “volatility farming”. In some cases, these attacks

can inflate a user’s rating several hundred points above its natural
value, producing ratings that are essentially impossible to beat via

honest play. This was most notably exploited in the popular game

of Pokemon Go [3]. See Section 5.1 for a discussion of this issue, as

well as an application of this attack to the Topcoder rating system.

The family of Elo-like methods just described only utilize the

binary outcome of a match. In settings where a scoring system

provides a more fine-grained measure of match performance, Ko-

valchik [27] has shown variants of Elo that are able to take advan-

tage of score information. For competitions consisting of several set
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tasks, such as academic olympiads, Forišek [19] developed a model

in which each task gives a different “response” to the player: the to-

tal response then predicts match outcomes. However, such systems

are often highly application-dependent and hard to calibrate.

Though Elo-like systems are widely used in two-player settings,

one needn’t look far to find competitions that involve much more

than two players. In response to the popularity of team-based games

such as CounterStrike and Halo, many recent works focus on com-

petitions that are between two teams [15, 24, 26, 28]. Another pop-

ular setting is many-player contests such as academic olympiads:

notably, programming contest platforms such as Codeforces, Top-

coder, and Kaggle [6, 8, 10]. As with the aforementioned Spartan

races, a typical event attracts thousands of contestants. Program-

ming contest platforms have seen exponential growth over the past

decade, collectively boasting millions of users [5]. As an example,

Codeforces gained over 200K new users in 2019 alone [2].

In “free-for-all” settings, where𝑁 players are ranked individually,

the Bayesian Approximation Ranking (BAR) algorithm [34] models

the competition as a series of

(𝑁
2

)
independent two-player contests.

In reality, of course, the pairwise match outcomes are far from

independent. Thus, TrueSkill [25] and its variants [17, 29, 31] model

a player’s performance during each contest as a single random

variable. The overall rankings are assumed to reveal the total order

among these hidden performance variables, with various methods

used to model ties and teams. For a textbook treatment of these

methods, see [35]. These rating systems are efficient in practice,

successfully rating userbases that number well into the millions (the

Halo series, for example, has over 60 million sales since 2001 [4]).

The main disadvantage of TrueSkill is its complexity: originally

developed by Microsoft for the popular Halo video game, TrueSkill

performs approximate belief propagation, which consists of mes-

sage passing on a factor graph, iterated until convergence. Aside

from being less human-interpretable, this complexity means that,

to our knowledge, there are no proofs of key properties such as run-

time and incentive-compatibility. Even when these properties are

discussed [29], no rigorous justification is provided. In addition, we

are not aware of any work that extends TrueSkill to non-Gaussian

performance models, whichmight be desirable to limit the influence

of outlier performances (see Section 5.2).

It might be for these reasons that popular platforms such as

Codeforces and Topcoder opted for their own custom rating sys-

tems. These systems are not published in academia and do not come

with Bayesian justifications. However, they retain the formulaic

simplicity of Elo and Glicko, extending them to settings with much

more than two players. The Codeforces system includes ad hoc

heuristics to distinguish top players, while curbing rampant infla-

tion. Topcoder’s formulas are more principled from a statistical

perspective; however, it has a volatility parameter similar to Glicko-

2, and hence suffers from similar exploits [19]. Despite their flaws,

these systems have been in place for over a decade, and have more

recently gained adoption by additional platforms such as CodeChef

and LeetCode [1, 7].

Our contributions. In this paper, we describe the Elo-MMR rating

system, obtained by a principled approximation of a Bayesianmodel

similar to Glicko and TrueSkill. It is fast, embarrassingly parallel,

andmakes accurate predictions.Most interesting of all, its simplicity

allows us to rigorously analyze its properties: the “MMR” in the

name stands for “Massive”, “Monotonic”, and “Robust”. “Massive”

means that it supports any number of players with a runtime that

scales linearly; “monotonic” is a synonym for incentive-compatible,

ensuring that a rating-maximizing player always wants to perform

well; “robust” means that rating changes are bounded, with the

bound being smaller for more consistent players than for volatile

players. Robustness turns out to be a natural byproduct of accurately

modeling performances with heavy-tailed distributions, such as

the logistic. TrueSkill is believed to satisfy the first two properties,

albeit without proof, but fails robustness. Codeforces only satisfies

incentive-compatibility, and Topcoder only satisfies robustness.

Experimentally, we show that Elo-MMR achieves state-of-the-art

performance in terms of both prediction accuracy and runtime on

industry datasets. In particular, we process the entire Codeforces

database of over 400K rated users and 1000 contests in well under a

minute, beating the existing Codeforces system by more than an or-

der of magnitude while improving upon its accuracy. Furthermore,

we show that the well-known Topcoder system is severely vulnera-

ble to volatility farming, whereas Elo-MMR is immune to such at-

tacks. A difficulty we faced was the scarcity of efficient open-source

rating system implementations. In an effort to aid researchers and

practitioners alike, we provide open-source implementations of all

rating systems, dataset mining, and additional processing used in

our experiments at https://github.com/EbTech/Elo-MMR.
We note that since releasing our preprint, Elo-MMR has already

been put in production in industry settings [9].

Organization. In Section 2, we formalize the details of our Bayesian

model. We then show how to estimate player skill under this model

in Section 3, and develop some intuitions of the resulting formulas.

As a further refinement, Section 4 models skill evolutions from

players training or atrophying between competitions. This mod-

eling is quite tricky as we choose to retain players’ momentum

while preserving incentive-compatibility. While our modeling and

derivations occupy multiple sections, the system itself is succinctly

presented in Algorithms 1 to 3. In Section 5, we perform a volatility

farming attack on the Topcoder system and prove that, in contrast,

Elo-MMR satisfies several salient properties, the most critical of

which is incentive-compatibility. Finally, in Section 6, we present

experimental evaluations, showing improvements over industry

standards in both accuracy and speed.

2 A BAYESIAN MODEL FOR MASSIVE
COMPETITIONS

We now describe the setting formally, denoting random variables

by capital letters. A series of competitive rounds, indexed by 𝑡 =

1, 2, 3, . . ., take place sequentially in time. Each round has a set of

participating players P𝑡 , which may in general overlap between

rounds. A player’s skill is likely to change with time, so we repre-

sent the skill of player 𝑖 at time 𝑡 by a real random variable 𝑆𝑖,𝑡 .

In round 𝑡 , each player 𝑖 ∈ P𝑡 competes at some performance
level 𝑃𝑖,𝑡 , typically close to their current skill 𝑆𝑖,𝑡 . The deviations

{𝑃𝑖,𝑡−𝑆𝑖,𝑡 }𝑖∈P𝑡 are assumed to be i.i.d. and independent of {𝑆𝑖,𝑡 }𝑖∈P𝑡 .
Performances are not observed directly; instead, a ranking gives

the relative order among all performances {𝑃𝑖,𝑡 }𝑖∈P𝑡 . In particular,

ties are modelled to occur when performances are exactly equal,

https://github.com/EbTech/Elo-MMR
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a zero-probability event when their distributions are continuous.
1

This ranking constitutes the observational evidence 𝐸𝑡 for our

Bayesian updates. The rating system seeks to estimate the skill 𝑆𝑖,𝑡
of every player at the present time 𝑡 , given the historical round

rankings 𝐸≤𝑡 := {𝐸1, . . . , 𝐸𝑡 }.
We overload the notation Pr for both probabilities and probability

densities: the latter interpretation applies to zero-probability events,

such as in Pr(𝑆𝑖,𝑡 = 𝑠). We also use colons as wildcards to denote

collections of variables differing only in a subscript: for instance,

𝑃:,𝑡 := {𝑃𝑖,𝑡 }𝑖∈P𝑡 . The joint distribution described by our Bayesian

model factorizes as follows:

Pr(𝑆:,:, 𝑃:,:, 𝐸:) (1)

=
∏
𝑖

Pr(𝑆𝑖,0)
∏
𝑖,𝑡

Pr(𝑆𝑖,𝑡 | 𝑆𝑖,𝑡−1)
∏
𝑖,𝑡

Pr(𝑃𝑖,𝑡 | 𝑆𝑖,𝑡 )
∏
𝑡

Pr(𝐸𝑡 | 𝑃:,𝑡 ),

where Pr(𝑆𝑖,0) is the initial skill prior,
Pr(𝑆𝑖,𝑡 | 𝑆𝑖,𝑡−1) is the skill evolution model (Section 4),

Pr(𝑃𝑖,𝑡 | 𝑆𝑖,𝑡 ) is the performance model, and

Pr(𝐸𝑡 | 𝑃:,𝑡 ) is the evidence model.

For the first three factors, we will specify log-concave distributions

(see Definition 3.1). The evidence model, on the other hand, is a

deterministic indicator. It equals one when 𝐸𝑡 is consistent with

the relative ordering among 𝑃:,𝑡 , and zero otherwise.

Finally, our model assumes that the number of participants |P𝑡 |
is large. The main idea behind our algorithm is that, in sufficiently

massive competitions, the evidence 𝐸𝑡 contains enough information

to infer very precise estimates for 𝑃:,𝑡 . Hence, we can treat these

performances as if they were observed directly.

With that in mind, we’ll often discuss the distributions of vari-

ables whose round subscript is 𝑡 , conditioned on either the prior
context 𝑃𝑖,<𝑡 or the posterior context 𝑃𝑖,≤𝑡 : these are called prior

and posterior distributions, respectively. In particular, suppose we

have the skill prior:

𝜋𝑖,𝑡 (𝑠) := Pr(𝑆𝑖,𝑡 = 𝑠 | 𝑃𝑖,<𝑡 ) . (2)

Now, we observe 𝐸𝑡 . By Equation (1), it is conditionally indepen-

dent of 𝑆𝑖,𝑡 , given 𝑃𝑖,≤𝑡 . By the law of total probability,

Pr(𝑆𝑖,𝑡 = 𝑠 | 𝑃𝑖,<𝑡 , 𝐸𝑡 )

=

∫
Pr(𝑆𝑖,𝑡 = 𝑠 | 𝑃𝑖,<𝑡 , 𝑃𝑖,𝑡 = 𝑝) Pr(𝑃𝑖,𝑡 = 𝑝 | 𝑃𝑖,<𝑡 , 𝐸𝑡 ) d𝑝.

This integral is intractable in general, since the performance

posterior Pr(𝑃𝑖,𝑡 = 𝑝 | 𝑃𝑖,<𝑡 , 𝐸𝑡 ) depends not only on player 𝑖 , but

also on our beliefs regarding the skills of all 𝑗 ∈ P𝑡 . However, in
the limit of infinite participants, Doob’s consistency theorem [20]

implies that the posterior concentrates at the true value 𝑃𝑖,𝑡 . That

is, with probability one, as |P𝑡 | → ∞,

Pr(𝑆𝑖,𝑡 = 𝑠 | 𝑃𝑖,<𝑡 , 𝐸𝑡 )

→ Pr(𝑆𝑖,𝑡 = 𝑠 | 𝑃𝑖,≤𝑡 )
∫

Pr(𝑃𝑖,𝑡 = 𝑝 | 𝑃𝑖,<𝑡 , 𝐸𝑡 ) d𝑝

= Pr(𝑆𝑖,𝑡 = 𝑠 | 𝑃𝑖,≤𝑡 ) .

1
The relevant limiting procedure is to treat performances within 𝜀-width buckets as

ties, and letting 𝜀 → 0. This technicality appears in the proof of Theorem 3.2.

Since our posteriors are continuous, the convergence holds for

all 𝑠 simultaneously. Moreover, we don’t even need the full evidence

𝐸𝑡 . Let 𝐸
𝐿
𝑖,𝑡

= { 𝑗 ∈ P : 𝑃 𝑗,𝑡 > 𝑃𝑖,𝑡 } be the set of players against
whom 𝑖 lost, and 𝐸𝑊

𝑖,𝑡
= { 𝑗 ∈ P : 𝑃 𝑗,𝑡 < 𝑃𝑖,𝑡 } be the set of players

against whom 𝑖 won. That is, we only look at who wins, draws,

and loses against 𝑖 . 𝑃𝑖,𝑡 remains identifiable using only (𝐸𝐿
𝑖,𝑡
, 𝐸𝑊

𝑖,𝑡
),

which will be more convenient for our purposes.

In practice, we should care about the rate of convergence. Sup-

pose we want our estimate to be within 𝜀 of 𝑃𝑖,𝑡 , with probability

at least 1 − 𝛿 . By asymptotic normality of the posterior [20], it

suffices to have 𝑂 ( 1

𝜀2
log

1

𝛿
) participants. Experimentally, we see

in Section 6.5 that Elo-MMR is competitive on all sizes of contests.

Bayesian ratings systems, such as Glicko and TrueSkill, make

several simplifying assumptions to render their posterior updates

tractable. Typically these are chosen ad hoc for convenience; how-

ever, having passed to a limit in which 𝑃𝑖,≤𝑡 is identified, our frame-

work is able to rigorously justify such simplifications. Firstly, since

𝑃𝑖,≤𝑡 is a sufficient statistic for predicting 𝑆𝑖,𝑡 , it may be said that

(𝐸𝐿
𝑖,≤𝑡 , 𝐸

𝑊
𝑖,≤𝑡 ) are “almost sufficient” for 𝑆𝑖,𝑡 : any additional informa-

tion, such as from domain-specific scoring systems, becomes redun-

dant for the purposes of skill estimation. Secondly, conditioned on

𝑃:,≤𝑡 , the posterior skills 𝑆:,𝑡 are independent of one another. As a

result, there are no inter-player correlations to model, and a player’s

posterior is unaffected by rounds in which they are not a partici-

pant. Finally, if we’ve truly identified 𝑃𝑖,𝑡 , then rounds later than 𝑡

should not prompt revisions in our estimate for 𝑃𝑖,𝑡 . This obviates

the need for expensive whole-history update procedures [16, 17],

for the purposes of present skill estimation.
2

Thus, when the initial prior, performance model, and evolution

model are all Gaussian, treating 𝑃𝑖,𝑡 as certain is the only simplify-

ing approximation we will make; that is, in the limit |P𝑡 | → ∞, our
method performs exact inference on Equation (1). In the following

sections, we focus some attention on generalizing the performance

model to non-Gaussian log-concave families, parametrized by loca-

tion and scale; here, a few minor approximations keep the deriva-

tions tractable. We will use the logistic distribution as a running

example and see that it induces robustness; however, our framework

is agnostic to the specific distributions used.

The prior rating 𝜇𝜋
𝑖,𝑡

and posterior rating 𝜇𝑖,𝑡 of player 𝑖 at round

𝑡 should be statistics that summarize the player’s prior and posterior

skill distribution, respectively. We’ll use the mode: thus, 𝜇𝑖,𝑡 is the

maximum a posteriori (MAP) estimate, obtained by setting 𝑠 to

maximize the posterior Pr(𝑆𝑖,𝑡 = 𝑠 | 𝑃𝑖,≤𝑡 ). By Bayes’ rule,

𝜇𝜋𝑖,𝑡 := arg max

𝑠
𝜋𝑖,𝑡 (𝑠),

𝜇𝑖,𝑡 := arg max

𝑠
𝜋𝑖,𝑡 (𝑠) Pr(𝑃𝑖,𝑡 | 𝑆𝑖,𝑡 = 𝑠). (3)

This objective suggests a two-phase algorithm to update each

player 𝑖 ∈ P𝑡 in response to the results of round 𝑡 . In phase one,

we estimate 𝑃𝑖,𝑡 from (𝐸𝐿𝑖,𝑡 , 𝐸
𝑊
𝑖,𝑡
). By Doob’s consistency theorem,

our estimate is extremely precise when |P𝑡 | is large, so we assume

it to be exact. In phase two, we update our posterior for 𝑆𝑖,𝑡 and

the rating 𝜇𝑖,𝑡 according to Equation (3).

2
As opposed to historical skill estimation, which is concerned with 𝑃 (𝑆𝑖,𝑡 | 𝑃𝑖,≤𝑡′ )
for 𝑡 ′ > 𝑡 . Whole-history methods can take advantage of future information.
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3 SKILL ESTIMATION IN TWO PHASES
3.1 Performance estimation
In this section, we describe the first phase of Elo-MMR. For nota-

tional convenience, we assume all probability expressions to be

conditioned on the prior context 𝑃𝑖,<𝑡 , and omit the subscript 𝑡 .

Our prior belief on each player’s skill 𝑆𝑖 implies a prior distri-

bution on 𝑃𝑖 . Let’s denote its probability density function (pdf)

by

𝑓𝑖 (𝑝) := Pr(𝑃𝑖 = 𝑝) =
∫

𝜋𝑖 (𝑠) Pr(𝑃𝑖 = 𝑝 | 𝑆𝑖 = 𝑠) d𝑠, (4)

where 𝜋𝑖 (𝑠) was defined in Equation (2). Let

𝐹𝑖 (𝑝) := Pr(𝑃𝑖 ≤ 𝑝) =
∫ 𝑝

−∞
𝑓𝑖 (𝑥) d𝑥,

be the corresponding cumulative distribution function (cdf). We’ll

also define the following functions, which will be associated with

losses, draws, and wins, respectively:

𝑙𝑖 (𝑝) :=
d

d𝑝
ln(1 − 𝐹𝑖 (𝑝)) =

−𝑓𝑖 (𝑝)
1 − 𝐹𝑖 (𝑝)

,

𝑑𝑖 (𝑝) :=
d

d𝑝
ln 𝑓𝑖 (𝑝) =

𝑓 ′
𝑖
(𝑝)

𝑓𝑖 (𝑝)
,

𝑣𝑖 (𝑝) :=
d

d𝑝
ln 𝐹𝑖 (𝑝) =

𝑓𝑖 (𝑝)
𝐹𝑖 (𝑝)

.

Evidently, 𝑙𝑖 (𝑝) < 0 < 𝑣𝑖 (𝑝). Now we define what it means for

the deviation 𝑃𝑖 − 𝑆𝑖 to be log-concave.

Definition 3.1. An absolutely continuous random variable on a
convex domain is log-concave if its probability density function 𝑓 is
positive on its domain and satisfies

𝑓 (𝜃𝑥 + (1 − 𝜃 )𝑦) > 𝑓 (𝑥)𝜃 𝑓 (𝑦)1−𝜃 , ∀𝜃 ∈ (0, 1), 𝑥 ≠ 𝑦.

Log-concave distributions appear widely, and include the Gauss-

ian and logistic distributions used in Glicko, TrueSkill, and many

others. We’ll see inductively that our prior 𝜋𝑖 is log-concave at

every round. Since log-concave densities are closed under convolu-

tion [13], the independent sum 𝑃𝑖 = 𝑆𝑖 +(𝑃𝑖 −𝑆𝑖 ) is also log-concave.
Log-concavity is made very convenient by the following lemma,

proved in the appendix:

Lemma 3.1. If 𝑓𝑖 is continuously differentiable and log-concave,
then the functions 𝑙𝑖 , 𝑑𝑖 , 𝑣𝑖 are continuous, strictly decreasing, and

𝑙𝑖 (𝑝) < 𝑑𝑖 (𝑝) < 𝑣𝑖 (𝑝) for all 𝑝.

For the remainder of this section, we fix the analysis with respect

to some player 𝑖 . As argued in Section 2, 𝑃𝑖 concentrates very

narrowly in the posterior. Hence, we can estimate 𝑃𝑖 by its MAP,

choosing 𝑝 so as to maximize:

Pr(𝑃𝑖 = 𝑝 | 𝐸𝐿𝑖 , 𝐸
𝑊
𝑖 ) ∝ 𝑓𝑖 (𝑝) Pr(𝐸𝐿𝑖 , 𝐸

𝑊
𝑖 | 𝑃𝑖 = 𝑝).

Define 𝑗 ≻ 𝑖 , 𝑗 ≺ 𝑖 , 𝑗 ∼ 𝑖 as shorthand for 𝑗 ∈ 𝐸𝐿
𝑖
, 𝑗 ∈ 𝐸𝑊

𝑖
,

𝑗 ∈ P \ (𝐸𝐿
𝑖
∪ 𝐸𝑊

𝑖
) (that is, 𝑃 𝑗 > 𝑃𝑖 , 𝑃 𝑗 < 𝑃𝑖 , 𝑃 𝑗 = 𝑃𝑖 ), respectively.

The following theorem yields our MAP estimate:
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Figure 1: 𝐿2 versus 𝐿𝑅 for typical values (left). Gaussian ver-
sus logistic probability density functions (right).

Theorem 3.2. Suppose that for all 𝑗 , 𝑓𝑗 is continuously differen-
tiable and log-concave. Then the maximizer of Pr(𝑃𝑖 = 𝑝 | 𝐸𝐿

𝑖
, 𝐸𝑊

𝑖
)

is unique and given by the unique zero of

𝑄𝑖 (𝑝) :=
∑
𝑗≻𝑖

𝑙 𝑗 (𝑝) +
∑
𝑗∼𝑖

𝑑 𝑗 (𝑝) +
∑
𝑗≺𝑖

𝑣 𝑗 (𝑝).

The proof appears in the appendix. Intuitively, we’re saying

that the performance is the balance point between appropriately

weighted wins, draws, and losses. Let’s look at two specializations

of our general model, to serve as running examples in this paper.

Gaussian performance model. If both 𝑆 𝑗 and 𝑃 𝑗 − 𝑆 𝑗 are assumed

to be Gaussian with known means and variances, then their inde-

pendent sum 𝑃 𝑗 will also be a known Gaussian. It is analytic and

log-concave, so Theorem 3.2 applies.

We substitute the well-known Gaussian pdf and cdf for 𝑓𝑗 and 𝐹 𝑗 ,

respectively. A simple binary search, or faster numerical techniques

such as the Illinois algorithm or Newton’s method, can be employed

to solve for the unique zero of 𝑄𝑖 .

Logistic performance model. Now we assume the performance

deviation 𝑃 𝑗 − 𝑆 𝑗 has a logistic distribution with mean 0 and vari-

ance 𝛽2
. In general, the rating system administrator is free to set 𝛽

differently for each contest. Since shorter contests tend to be more

variable, one reasonable choice might be to make 1/𝛽2
proportional

to the contest duration.

Given the mean and variance of the skill prior, the independent

sum 𝑃 𝑗 = 𝑆 𝑗 + (𝑃 𝑗 − 𝑆 𝑗 ) would have the same mean, and a variance

that’s increased by 𝛽2
. Unfortunately, we’ll see that the logistic

performance model implies a form of skill prior from which it’s

tough to extract a mean and variance. Even if we could, the sum

does not yield a simple distribution.

For experienced players, we expect 𝑆 𝑗 to contribute much less

variance than 𝑃 𝑗 −𝑆 𝑗 ; thus, in our heuristic approximation, we take

𝑃 𝑗 to have the same form of distribution as the latter. That is, we

take 𝑃 𝑗 to be logistic, centered at the prior rating 𝜇𝜋
𝑗
= arg max𝜋 𝑗 ,

with variance 𝛿2

𝑗
= 𝜎2

𝑗
+ 𝛽2

, where 𝜎 𝑗 will be given by Equation (8).

This distribution is analytic and log-concave, so the same methods

based on Theorem 3.2 apply.

Let’s derive𝑄𝑖 explicitly in this case, since it has a rather intuitive

form. The logistic distribution with variance 𝛿2

𝑗
has scale parameter
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¯𝛿 𝑗 :=

√
3

𝜋 𝛿 𝑗 ; its cdf and pdf are:

𝐹 𝑗 (𝑝) =
1

1 + 𝑒−(𝑝−𝜇
𝜋
𝑗
)/ ¯𝛿 𝑗

=
1

2

(
1 + tanh

𝑝 − 𝜇𝜋
𝑗

2
¯𝛿 𝑗

)
,

𝑓𝑗 (𝑝) =
𝑒
(𝑝−𝜇𝜋

𝑗
)/ ¯𝛿 𝑗

¯𝛿 𝑗

(
1 + 𝑒 (𝑝−𝜇

𝜋
𝑗
)/ ¯𝛿 𝑗

)
2
=

1

4
¯𝛿 𝑗

sech
2

𝑝 − 𝜇𝜋
𝑗

2
¯𝛿 𝑗

.

They satisfy two very convenient relations:

𝐹 ′𝑗 (𝑝) = 𝑓𝑗 (𝑝) = 𝐹 𝑗 (𝑝) (1 − 𝐹 𝑗 (𝑝))/ ¯𝛿 𝑗 ,

𝑓 ′𝑗 (𝑝) = 𝑓𝑗 (𝑝) (1 − 2𝐹 𝑗 (𝑝))/ ¯𝛿 𝑗 ,

from which it follows that

𝑑 𝑗 (𝑝) =
1 − 2𝐹 𝑗 (𝑝)

¯𝛿
=
−𝐹 𝑗 (𝑝)

¯𝛿
+

1 − 𝐹 𝑗 (𝑝)
¯𝛿

= 𝑙 𝑗 (𝑝) + 𝑣 𝑗 (𝑝).

In other words, a tie counts as the sum of a win and a loss.

This can be compared to the approach (used in Elo, Glicko, BAR,

Topcoder, and Codeforces) of treating each tie as half a win plus

half a loss.
3

Finally, putting everything together:

𝑄𝑖 (𝑝) =
∑
𝑗≻𝑖

𝑙 𝑗 (𝑝) +
∑
𝑗∼𝑖

(
𝑙 𝑗 (𝑝) + 𝑣 𝑗 (𝑝)

)
+

∑
𝑗≺𝑖

𝑣 𝑗 (𝑝)

=
∑
𝑗⪰𝑖

𝑙 𝑗 (𝑝) +
∑
𝑗⪯𝑖

𝑣 𝑗 (𝑝)

=
∑
𝑗⪰𝑖

−𝐹 𝑗 (𝑝)
¯𝛿 𝑗

+
∑
𝑗⪯𝑖

1 − 𝐹 𝑗 (𝑝)
¯𝛿 𝑗

.

Our estimate for 𝑃𝑖 is the zero of this expression. Its terms cor-

respond to probabilities, weighted by 1/ ¯𝛿 𝑗 , of losing and winning

against each player 𝑗 . Accordingly, we can interpret

∑
𝑗 ∈P (1 −

𝐹 𝑗 (𝑝))/ ¯𝛿 𝑗 as a weighted expected rank of a player whose perfor-

mance is 𝑝 . 𝑃𝑖 can thus be viewed as the performance level at

which one’s expected rank would equal 𝑖’s actual rank. While the

Codeforces and Topcoder systems compute performance values in

a similar manner, here we’ve derived the formula from Bayesian

principles.

3.2 Belief update
Having estimated 𝑃𝑖,𝑡 in the first phase, the second phase is more

straightforward. Ignoring normalizing constants, Equation (3) tells

us that the pdf of the skill posterior can be obtained as the pointwise

product of the pdfs of the skill prior and the performance model.

When both factors are differentiable and log-concave, then so is

their product. Its maximum is the new rating 𝜇𝑖,𝑡 ; let’s see how to

compute it for the same two specializations of our model.

Gaussian performance model. When the skill prior and perfor-

mance model are Gaussian with known means and variances, multi-

plying their pdfs yields another known Gaussian. Hence, the poste-

rior is compactly represented by its mean 𝜇𝑖,𝑡 , which coincides with

the MAP and rating; and its variance 𝜎2

𝑖,𝑡
, which is our uncertainty

regarding the player’s skill.

3
Elo-MMR, too, can be modified to split ties into half win plus half loss. It’s easy to

check that Lemma 3.1 still holds if 𝑑 𝑗 (𝑝) is replaced by 𝑤𝑙 𝑙 𝑗 (𝑝) +𝑤𝑣𝑣𝑗 (𝑝) , provided
that 𝑤𝑙 , 𝑤𝑣 ∈ [0, 1] and |𝑤𝑙 −𝑤𝑣 | < 1. In particular, we can set 𝑤𝑙 = 𝑤𝑣 = 0.5. The

results in Section 5 won’t be altered by this change.

Logistic performance model. When the performancemodel is non-

Gaussian, the pointwise product of pdfs does not simplify so easily.

By Equation (3), each round contributes an additional factor to the

belief distribution. In general, we allow it to consist of a collection

of simple log-concave factors, one for each round in which player 𝑖

has participated. Denote 𝑖’s participation history by

H𝑖,𝑡 := {𝑘 ∈ {1, . . . , 𝑡} : 𝑖 ∈ P𝑘 }.

Since the factors deal with only a single player, we’ll omit the

subscript 𝑖 . Specializing to the logistic setting, each 𝑘 ∈ H𝑡 con-

tributes a logistic factor to the posterior, with mean 𝑝𝑘 and variance

𝛽2

𝑘
. We still use a Gaussian initial prior, with mean and variance

denoted by 𝑝0 and 𝛽2

0
, respectively. Postponing the discussion of

skill evolution to Section 4, for the moment we assume that 𝑆𝑘 = 𝑆0

for all 𝑘 . The posterior pdf, up to normalization, is then

𝜋0 (𝑠)
∏
𝑘∈H𝑡

Pr(𝑃𝑘 = 𝑝𝑘 | 𝑆𝑘 = 𝑠)

∝ exp

(
− (𝑠 − 𝑝0)2

2𝛽2

0

) ∏
𝑘∈H𝑡

sech
2

(
𝜋
√

12

𝑠 − 𝑝𝑘
𝛽𝑘

)
. (5)

Maximizing the posterior density amounts to minimizing its

negative logarithm. Up to a constant offset, this is given by

𝐿(𝑠) := 𝐿2

(
𝑠 − 𝑝0

𝛽0

)
+

∑
𝑘∈H𝑡

𝐿𝑅

(
𝑠 − 𝑝𝑘
𝛽𝑘

)
,

where 𝐿2 (𝑥) :=
1

2

𝑥2
and 𝐿𝑅 (𝑥) := 2 ln

(
cosh

𝜋𝑥
√

12

)
.

Thus, 𝐿′(𝑠) = 𝑠 − 𝑝0

𝛽2

0

+
∑
𝑘∈H𝑡

𝜋

𝛽𝑘
√

3

tanh

(𝑠 − 𝑝𝑘 )𝜋
𝛽𝑘
√

12

. (6)

𝐿′ is continuous and strictly increasing in 𝑠 , so its zero is unique:

it is the MAP 𝜇𝑡 . Similar to what we did in the first phase, we can

solve for 𝜇𝑡 with binary search or other root-solving methods.

Furthermore, Equation (6) reveals a rather intuitive interpreta-

tion for the rating 𝜇𝑡 as an aggregate of the historical performances

𝑝≤𝑡 : Gaussian factors in 𝐿 become 𝐿2 penalty terms, whereas logis-

tic factors appear as the more interesting 𝐿𝑅 terms. In Figure 1, we

see that 𝐿𝑅 behaves quadratically near the origin, but linearly at the

extremities. It’s essentially a smoothed Huber loss, interpolating

between 𝐿2 and 𝐿1 over a scale of magnitude 𝛽𝑘 .

It is well-known that minimizing a sum of 𝐿2 terms pushes the

argument towards a weighted mean, while minimizing a sum of

𝐿1 terms pushes the argument towards a weighted median. With

𝐿𝑅 terms, the net effect is that 𝜇𝑡 acts like a robust average of the

historical performances 𝑝≤𝑡 . Specifically, one can check that

𝜇𝑡 =

∑
𝑘 𝑤𝑘𝑝𝑘∑
𝑘 𝑤𝑘

, where𝑤0 :=
1

𝛽2

0

and

𝑤𝑘 :=
𝜋

(𝜇𝑡 − 𝑝𝑘 )𝛽𝑘
√

3

tanh

(𝜇𝑡 − 𝑝𝑘 )𝜋
𝛽𝑘
√

12

for 𝑘 ∈ H𝑡 . (7)

𝑤𝑘 is close to 1/𝛽2

𝑘
for typical performances, but can be up to

𝜋2/6 times more as |𝜇𝑡 −𝑝𝑘 | → 0, or vanish entirely as |𝜇𝑡 −𝑝𝑘 | →
∞. The latter feature is due to the thicker tails of the logistic dis-

tribution, as compared to the Gaussian, resulting in an algorithm



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Aram Ebtekar and Paul Liu

that resists drastic rating changes in the presence of a few unusu-

ally good or bad performances. We’ll formally state this robustness
property in Theorem 5.7.

Estimating skill uncertainty. While there is no easy way to com-

pute the variance of a posterior in the form of Equation (5), it will

be useful to have some estimate 𝜎2

𝑡 of uncertainty. There is a simple

formula in the case where all factors are Gaussian. Since moment-

matched logistic and normal distributions are relatively close (cf.

Figure 1), we apply the same formula:

1

𝜎2

𝑡

:=
∑

𝑘∈{0}∪H𝑡

1

𝛽2

𝑘

. (8)

3.3 Team competitions
While our main focus is on ranked competitions between a large

number of individuals, Elo-MMR can be adapted to ranked compe-

titions between a large number of teams. In this setting, round 𝑡 ’s

set of participants P𝑡 is partitioned into a disjoint union of teams

𝜏 ∈ T𝑡 : formally, P𝑡 =
⊔

𝜏 ∈T𝑡 𝜏 .
Instead of ranking individual 𝑖 by their performance 𝑃𝑖 , the com-

petition ranks an entire team 𝜏 by a performance variable 𝑃𝜏 , which

depends on the skills {𝑆𝑖 : 𝑖 ∈ 𝜏} of all its members. In general, the

probabilistic team performance model should be domain-specific:

depending, for instance, on whether game outcomes are most heav-

ily influenced by a team’s weakest or strongest player. A default

choice that credits team members equally is the sum of their indi-

vidual performances:

𝑃𝜏 :=
∑
𝑖∈𝜏

𝑃𝑖 =
∑
𝑖∈𝜏

𝑆𝑖 +
∑
𝑖∈𝜏
(𝑃𝑖 − 𝑆𝑖 ).

Thus, 𝑃𝜏 is a sum of 2|𝜏 | independently distributed terms. Just

as before, we approximate this sum by a single Gaussian or logistic

term with matching moments. Instead of the moments (𝜇𝜋
𝑖
, 𝛿𝑖 ) of

𝑃𝑖 in Algorithm 1, we’ll have

𝜇𝜋𝜏 ←
∑
𝑖∈𝜏

𝜇𝑖 ,

𝛿𝜏 ←
√
|𝜏 |𝛽2 +

∑
𝑖∈𝜏

𝜎2

𝑖
.

With this change, the algorithm proceeds almost exactly as be-

fore, with the performance estimation step operating at the level of

teams instead of individuals, 𝑃𝜏 , 𝜇
𝜋
𝜏 , 𝛿𝜏 replacing 𝑃𝑖 , 𝜇

𝜋
𝑖
, 𝛿𝑖 .

The main caveat is that, in our limit of large competitions, we

only obtain precise estimates of the team performance 𝑃𝜏 . To esti-

mate the individual performance 𝑃𝑖 , which in turn approximates

𝑆𝑖 , we subtract all of 𝑖’s teammates’ ratings from 𝑃𝜏 . Since

𝑆𝑖 = 𝑃𝜏 −
∑

𝑗 ∈𝜏,𝑗≠𝑖
𝑆 𝑗 −

∑
𝑗 ∈𝜏
(𝑃 𝑗 − 𝑆 𝑗 ),

the variance of this estimate is not 𝛽2
, but |𝜏 |𝛽2 + ∑

𝑗 ∈𝜏,𝑗≠𝑖 𝜎
2

𝑗
.

Since we don’t know who to credit for a team outcome, it’s impossi-

ble to precisely estimate 𝑃𝑖 . As a result, the independence argument

in Section 2 ceases to hold. Nonetheless, Elo-MMR for team contests

continues to enjoy the properties described in Section 5.

While smarter credit-assignment schemes may be considered in

future work, one should be wary of the risk that such mechanisms

may motivate players to seek credit, even at the expense of a team’s

overall performance. By simply distributing the credit equally, we

ensure that every individual’s incentive is perfectly aligned with

winning as a team.

4 SKILL EVOLUTION OVER TIME
Over time, as a player trains or rests, a player’s skill can change. If

we model skill as a static variable, our system will eventually grow

so confident in its estimate that it will refuse to admit substantial

changes. To remedy this, we introduce a skill evolution model, so

that in general 𝑆𝑡 ≠ 𝑆𝑡 ′ for 𝑡 ≠ 𝑡 ′. Rather than simply being equal

to the previous round’s posterior, now the skill prior at round 𝑡 is

given by

𝜋𝑡 (𝑠) =
∫

Pr(𝑆𝑡 = 𝑠 | 𝑆𝑡−1 = 𝑥) Pr(𝑆𝑡−1 = 𝑥 | 𝑃<𝑡 ) d𝑥 . (9)

The factors in the integrand are the skill evolution model and the

previous round’s posterior, respectively. Following other Bayesian

rating systems (e.g., Glicko, Glicko-2, and TrueSkill [22, 23, 25]),

we model the skill changes 𝑆𝑡 − 𝑆𝑡−1 as independent zero-mean

Gaussians. That is, Pr(𝑆𝑡 | 𝑆𝑡−1 = 𝑥) is a Gaussian with mean 𝑥

and some variance 𝛾2

𝑡 .

There is some flexibility in how 𝛾𝑡 is set. Glicko, in its origi-

nal presentation, sets 𝛾2

𝑡 proportionally to the time elapsed since

the last update, corresponding to a continuous Brownian motion.

Codeforces and Topcoder simply set 𝛾𝑡 to a constant when a player

participates, and zero otherwise, corresponding to changes that are

in proportion to how often the player competes. Now we are ready

to complete the two specializations of our rating system.

Gaussian performance model. If the performance model and the

prior on 𝑆𝑡−1 are both Gaussian, then the posterior on 𝑆𝑡−1 is also

Gaussian. Since 𝑆𝑡 = 𝑆𝑡−1 + (𝑆𝑡 − 𝑆𝑡−1) is a sum of independent

Gaussians, its prior is Gaussian as well. By induction, the skill belief

distribution forever remains Gaussian. As we’ll see in Section 5.2,

this Gaussian specialization of the Elo-MMR framework lacks the

R for robustness, so we call it Elo-MM𝜒 .

Logistic performance model. After a player’s first participation,
the posterior in Equation (5) becomes non-Gaussian, rendering the

integral in Equation (9) intractable.

A very simple approach would be to replace the full posterior in

Equation (5) by a Gaussian approximation with mean 𝜇𝑡 (equal to

the posterior MAP) and variance 𝜎2

𝑡 (given by Equation (8)). Then,

as in the previous case, the intractable integral specializes to a

simple addition of Gaussian random variables.

With this approximation, no memory is kept of the individual

performances 𝑃𝑡 . Priors are simply Gaussian, while the pdf of a

skill posterior is the product of two factors: the Gaussian prior, and

a logistic factor corresponding to the latest performance. To ensure

robustness (see Section 5.2), 𝜇𝑡 is computed as the arg max of this

posterior before replacement by its Gaussian approximation. We

call the rating system that takes this approach Elo-MMR(∞).
As the name implies, it turns out to be a limiting case of Elo-

MMR(𝜌). In the general setting with 𝜌 ∈ [0,∞), we keep the full

posterior from Equation (5). Since we cannot tractably compute the

effect of a Gaussian diffusion, we seek a heuristic derivation of the

next round’s prior, retaining a form similar to Equation (5) while

satisfying many of the same properties as the intended diffusion.
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4.1 Desirable properties of a “pseudodiffusion”
We begin by listing some properties that our skill evolution algo-

rithm, henceforth called a “pseudodiffusion”, should satisfy. It will

have a size parameter 𝛾2
, analogous to the variance of a Gaussian

diffusion. The first two properties are natural:

• Incentive-compatibility. First and foremost, the pseudodiffusion

must not break the incentive-compatibility of our rating system.

That is, a rating-maximizing player should never be motivated

to lose on purpose (see Theorem 5.5).

• Rating preservation.The pseudodiffusionmust not alter the arg max

of the belief density. That is, the rating of a player should not

change: 𝜇𝜋𝑡 = 𝜇𝑡−1.

In addition, we borrow four properties of Gaussian diffusions:

• Correct magnitude. A pseudodiffusion of size 𝛾2
must increase

the skill uncertainty, as measured by Equation (8), by 𝛾2
.

• Composability. Two pseudodiffusions applied in sequence, first

with size 𝛾2

1
and then with size 𝛾2

2
, must have the same effect as

a single pseudodiffusion of size 𝛾2

1
+ 𝛾2

2
.

• Zero diffusion. In the limit as𝛾 → 0, the effect of a pseudodiffusion

must vanish, i.e., not alter the belief distribution.

• Zero uncertainty. In the limit as 𝜎𝑡−1 → 0 (i.e., when the previous

rating 𝜇𝑡−1 is a perfect estimate of 𝑆𝑡−1), our prior on 𝑆𝑡 must

become Gaussian with mean 𝜇𝑡−1 and variance 𝛾2
. Finer-grained

information regarding the history 𝑃<𝑡 must be erased.

In particular, Elo-MMR(∞) fails the zero diffusion property because

it simplifies the belief distribution, even when 𝛾 = 0. In the proof of

Theorem 4.1, we’ll see that Elo-MMR(0) fails the zero uncertainty
property. Thus, it is in fact necessary to have 𝜌 strictly positive and

finite. In Section 5.2, we’ll come to interpret 𝜌 as a kind of inverse

momentum.

4.2 A heuristic pseudodiffusion algorithm
Each factor in the posterior (see Equation (5)) has a parameter 𝛽𝑘 .

Define a factor’s weight to be𝑤𝑘 := 1/𝛽2

𝑘
, which by Equation (8)

contributes to the total weight
∑
𝑘 𝑤𝑘 = 1/𝜎2

𝑡 . Here, unlike in

Equation (7),𝑤𝑘 does not depend on |𝜇𝑡 − 𝑝𝑘 |.
Recall that the approximation step of Elo-MMR(∞) replaces all

the logistic factors by a single Gaussian whose variance is chosen

to ensure that the total weight is preserved. In addition, its mean is

chosen to preserve the player’s rating, given by the unique zero of

Equation (6). Finally, the diffusion step of Elo-MMR(∞) increases
the Gaussian’s variance, and hence the player’s skill uncertainty,

by 𝛾2

𝑡 ; this corresponds to a decay in the weight.

To generalize the idea, we interleave the two steps in a contin-

uous manner. The approximation step becomes a transfer step:
rather than replace the logistic factors outright, we take away equal

fractions from each of their weights, and place the sum of removed
weights onto a new Gaussian factor. In order for this operation to

preserve ratings, the new factor must be centered at 𝜇𝑡−1. Since

Gaussian pdfs compose, the prior Gaussian factor can be combined

with the new one. The diffusion step becomes a decay step, re-
ducing each factor’s weight by equal fractions (possibly different

from the fractions in the transfer step), chosen such that the overall

uncertainty is increased by 𝛾2

𝑡 .

Algorithm 1 Elo-MMR(𝜌, 𝛽,𝛾, 𝜇𝑖𝑛𝑖𝑡 , 𝜎𝑖𝑛𝑖𝑡 )

for all rounds 𝑡 do
P, ⪯, ⪰ ← outcome of round 𝑡

for all players 𝑖 ∈ P in parallel do
if 𝑖 has never competed before then

𝜇𝑖 , 𝜎𝑖 ← 𝜇𝑖𝑛𝑖𝑡 , 𝜎𝑖𝑛𝑖𝑡
𝑝𝑖 ,𝑤𝑖 ← [𝜇𝑖 ], [1/𝜎2

𝑖
]

diffuse(𝑖)

𝜇𝜋
𝑖
, 𝛿𝑖 ← 𝜇𝑖 ,

√
𝜎2

𝑖
+ 𝛽2

for all players 𝑖 ∈ P in parallel do
update(𝑖)

To make the idea precise, we generalize the posterior from Equa-

tion (5) with fractional multiplicities 𝜔𝑘 : the 𝑘’th factor is raised

to the power 𝜔𝑘 . As a result, Equations (6) and (8) become:

𝐿′(𝑠) = 𝜔0 (𝑠 − 𝑝0)
𝛽2

0

+
∑
𝑘∈H𝑡

𝜔𝑘𝜋

𝛽𝑘
√

3

tanh

(𝑠 − 𝑝𝑘 )𝜋
𝛽𝑘
√

12

,

1

𝜎2

𝑡

:=
∑

𝑘∈{0}∪H𝑡

𝑤𝑘 , where𝑤𝑘 :=
𝜔𝑘

𝛽2

𝑘

. (10)

For 𝜌 ∈ [0,∞), the Elo-MMR(𝜌) algorithm continuously and

simultaneously performs transfer and decay, with transfer proceed-

ing at 𝜌 times the rate of decay. Of course, for 𝜌 = ∞, the transfer
is instantaneous and only the 0’th term survives. Holding 𝛽𝑘 fixed,

changes to 𝜔𝑘 can be described in terms of changes to𝑤𝑘 :

d𝑤0

d𝑡
= −𝑟 (𝑡)𝑤0 + 𝜌𝑟 (𝑡)

∑
𝑘∈H𝑡

𝑤𝑘 ,

d𝑤𝑘

d𝑡
= −(1 + 𝜌)𝑟 (𝑡)𝑤𝑘 for 𝑘 ∈ H𝑡 ,

where the arbitrary decay rate 𝑟 (𝑡) can be eliminated by a change

of variable d𝜏 = 𝑟 (𝑡)d𝑡 . The evolution from the end of round 𝑡 − 1

to the start of round 𝑡 corresponds to some interval Δ𝜏 , over which
the total weight will have decayed by a factor 𝜅𝑡 := 𝑒−Δ𝜏 . Solving
the differential equations yields the new weights, distinguished by

their round 𝑡 subscripts:

𝑤0,𝑡 = 𝜅𝑡𝑤0,𝑡−1 +
(
𝜅𝑡 − 𝜅1+𝜌

𝑡

) ∑
𝑘∈H𝑡

𝑤𝑘,𝑡−1
,

𝑤𝑘,𝑡 = 𝜅
1+𝜌
𝑡 𝑤𝑘,𝑡−1

for 𝑘 ∈ H𝑡 . (11)

The correct magnitude property requires the uncertainty to in-

crease from 𝜎2

𝑡−1
to 𝜎2

𝑡−1
+ 𝛾2

𝑡 . By Equations (10) and (11),

1

𝜎2

𝑡−1
+ 𝛾2

𝑡

=
∑

𝑘∈{0}∪H𝑡

𝑤𝑘,𝑡 = 𝜅𝑡

∑
𝑘∈{0}∪H𝑡

𝑤𝑘,𝑡−1
=

𝜅𝑡

𝜎2

𝑡−1

,

Solving for the decay factor:

𝜅𝑡 =

(
1 +

𝛾2

𝑡

𝜎2

𝑡−1

)−1

.

Algorithm 1 details the full Elo-MMR(𝜌) rating system. Each

round of competition yields a set of participants P𝑡 , along with

their rank-ordering. New players are initialized with a Gaussian

prior. Changes in player skill are modeled by Algorithm 2; note
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Algorithm 2 diffuse(𝑖)

𝜅 ← (1 + 𝛾2/𝜎2

𝑖
)−1

𝑤𝐺 ,𝑤𝐿 ← 𝜅𝜌𝑤𝑖,0, (1 − 𝜅𝜌 )
∑
𝑘≥0

𝑤𝑖,𝑘

𝑝𝑖,0 ← (𝑤𝐺𝑝𝑖,0 +𝑤𝐿𝜇𝑖 )/(𝑤𝐺 +𝑤𝐿)
𝑤𝑖,0 ← 𝜅 (𝑤𝐺 +𝑤𝐿)
for all 𝑘 > 0 do
𝑤𝑖,𝑘 ← 𝜅1+𝜌𝑤𝑖,𝑘

𝜎𝑖 ← 𝜎𝑖/
√
𝜅

Algorithm 3 update(𝑖)

𝑝 ← zero of

𝑥 ∈R
∑
𝑗⪯𝑖

1

𝛿 𝑗

(
tanh

𝑥−𝜇𝜋
𝑗

2
¯𝛿 𝑗
− 1

)
+ ∑

𝑗⪰𝑖
1

𝛿 𝑗

(
tanh

𝑥−𝜇𝜋
𝑗

2
¯𝛿 𝑗
+ 1

)
𝑝𝑖 .push(𝑝)

𝑤𝑖 .push(1/𝛽2
)

𝜇𝑖 ← zero of

𝑥 ∈R
𝑤𝑖,0 (𝑥 − 𝑝𝑖,0) +

∑
𝑘>0

𝑤𝑖,𝑘𝛽
2

¯𝛽
tanh

𝑥−𝑝𝑖,𝑘
2

¯𝛽

how the updated Gaussian term blends its old value with the new

Gaussian term created by the transfer process. The first phase of

Algorithm 3 estimates 𝑃𝑡 as the zero of a function of 𝑥 . Finally, the

second phase computes 𝜇𝑡 as the zero of another function.

The hyperparameters 𝜌, 𝛽,𝛾 are domain-dependent, and can be

set by standard hyperparameter search techniques. The system’s

invariance to translation and scale allows 𝜇𝑖𝑛𝑖𝑡 , 𝜎𝑖𝑛𝑖𝑡 to be set ar-

bitrarily; a common choice is 1500, 350 [23]. For convenience, we

assume 𝛽 and 𝛾 are fixed and use the shorthand
¯𝛽 :=

√
3

𝜋 𝛽 . Whereas

our exposition used global round indices, here a subscript 𝑘 corre-

sponds to the 𝑘’th round in player 𝑖’s participation history.

Theorem 4.1. Algorithm 2 with 𝜌 ∈ (0,∞) meets all of the prop-
erties listed in Section 4.1.

Proof. We go through each of the six properties in order.

• Incentive-compatibility. This property will be stated in Theo-

rem 5.5. To ensure that its proof carries through, the relevant facts

to note here are that the pseudodiffusion algorithm ignores the

performances 𝑝𝑘 , and centers the transferred Gaussian weight at

the rating 𝜇𝑡−1, which is trivially monotonic in 𝜇𝑡−1.

• Rating preservation. Recall that the rating is the unique zero of 𝐿′

in Equation (10). To see that this zero is preserved, note that the

decay and transfer operations multiply 𝐿′ by constants (𝜅𝑡 and

𝜅
𝜌
𝑡 , respectively), before adding the new Gaussian term, whose

contribution to 𝐿′ is zero at its center.

• Correct magnitude. Follows from our derivation for 𝜅𝑡 .

• Composability. Follows from correct magnitude and the fact that

every pseudodiffusion follows the same differential equations.

• Zero diffusion. As 𝛾 → 0, 𝜅𝑡 → 1. Provided that 𝜌 < ∞, we also
have 𝜅

𝜌
𝑡 → 1. Hence, for all 𝑘 ∈ {0} ∪ H𝑡 ,𝑤𝑘,𝑡 → 𝑤𝑘,𝑡−1

.

• Zero uncertainty. As 𝜎𝑡−1 → 0, 𝜅𝑡 → 0. The total weight decays

from 1/𝜎2

𝑡−1
, which becomes extremely large in this limit, to 𝛾2

.

Provided that 𝜌 > 0, we also have 𝜅
𝜌
𝑡 → 0, so these weights

transfer in their entirety, leaving behind a Gaussian with mean

𝜇𝑡−1, variance 𝛾
2
, and no additional history. □

5 THEORETICAL PROPERTIES
In this section, we see how the simplicity of the Elo-MMR formulas

enables us to rigorously prove that the rating system is incentive-

compatible, robust, and computationally efficient.

5.1 Incentive-compatibility
To demonstrate the need for incentive-compatibility, let’s look at

the consequences of violating this property in the Topcoder and

Glicko-2 rating systems. These systems track a “volatility” for each

player, which estimates the variance of their performances. A player

whose recent performance history is more consistent would be

assigned a lower volatility score, than one with wild swings in

performance. The volatility acts as a multiplier on rating changes;

thus, players with an extremely low or high performance will have

their subsequent rating changes amplified.

While it may seem like a good idea to boost changes for players

whose ratings are poor predictors of their performance, this fea-

ture has an exploit. By intentionally performing at a weaker level, a

player can amplify future increases to an extent that more than com-

pensates for the immediate hit to their rating. A player may even

“farm” volatility by alternating between very strong and very weak

performances. After acquiring a sufficiently high volatility score,

the strategic player exerts their honest maximum performance over

a series of contests. The amplification eventually results in a rat-

ing that exceeds what would have been obtained via honest play.

This type of exploit was discovered in Glicko-2 as applied to the

Pokemon Go video game [3]. Table 5.3 of [19] presents a milder

violation in Topcoder competitions.

To get a realistic estimate of the severity of this exploit, we per-

formed a simple experiment on the first five years of the Codeforces

contest dataset (see Section 6.1). In Figure 2, we plot the rating evo-

lution of the world’s #1 ranked competitive programmer, Gennady

Korotkevich, better known as tourist. In the control setting, we
plot his ratings according to the Topcoder and Elo-MMR(1) systems.

We contrast these against an adversarial setting, in which we have

tourist employ the following strategy: for his first 45 contests,

tourist plays normally (exactly as in the unaltered data). For his

next 45 contests, tourist purposely falls to last place whenever his
Topcoder rating is above 2975. Finally, tourist returns to playing

normally for an additional 15 contests.

This strategy mirrors the Glicko-2 exploit documented in [3],

and does not require unrealistic assumptions (e.g., we don’t demand

tourist to exercise very precise control over his performances).

Compared to a consistently honest tourist, the volatility farm-

ing tourist ended up 523 rating points ahead by the end of the

experiment, with almost 1000 rating points gained in the last 15

contests alone. Transferring the same sequence of performances

to the Elo-MMR(1) system, we see that it not only is immune to

such volatility-farming attacks, but it also penalizes the dishonest

strategy with a rating loss that decays exponentially once honest

play resumes.

Recall that a key purpose of modeling volatility in Topcoder

and Glicko-2 was to boost rating changes for inconsistent players.

Remarkably, Elo-MMR achieves the same effect: we’ll see in Sec-

tion 5.2 that, for 𝜌 ∈ [0,∞), Elo-MMR(𝜌) also boosts changes to

inconsistent players. And yet, we’ll now prove that no strategic

incentive for purposely losing exists in any version of Elo-MMR.
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Figure 2: Volatility farming attack on the Topcoder system.

To this end, we need a few lemmas. Recall that, for the purposes

of the algorithm, the performance 𝑝𝑖 is defined to be the unique

zero of the function𝑄𝑖 (𝑝) :=
∑

𝑗≻𝑖 𝑙 𝑗 (𝑝) +
∑

𝑗∼𝑖 𝑑 𝑗 (𝑝) +
∑

𝑗≺𝑖 𝑣 𝑗 (𝑝),
whose terms 𝑙 𝑗 , 𝑑 𝑗 , 𝑣 𝑗 are contributed by opponents against whom 𝑖

lost, drew, or won, respectively. Wins always contribute positively

to a player’s performance score, while losses contribute negatively:

Lemma 5.1. Adding a win term to 𝑄𝑖 , or replacing a tie term by a
win term, always increases its zero. Conversely, adding a loss term, or
replacing a tie term by a loss term, always decreases it.

Proof. By Lemma 3.1, 𝑄𝑖 (𝑝) is decreasing in 𝑝 . Thus, adding a

positive term will increase its zero whereas adding a negative term

will decrease it. The desired conclusion follows by noting that, for

all 𝑗 and 𝑝 ,

𝑣 𝑗 (𝑝) > 0, 𝑣 𝑗 (𝑝) − 𝑑 𝑗 (𝑝) > 0,

𝑙 𝑗 (𝑝) < 0, 𝑙 𝑗 (𝑝) − 𝑑 𝑗 (𝑝) < 0.

□

While not needed for our main result, a similar argument shows

that performance scores are monotonic across the round standings:

Theorem 5.2. If 𝑖 ≻ 𝑗 (that is, 𝑖 beats 𝑗) in a given round, then
the players’ performance estimates satisfy 𝑝𝑖 > 𝑝 𝑗 .

Proof. If 𝑖 ≻ 𝑗 with 𝑖, 𝑗 adjacent in the rankings, then

𝑄𝑖 (𝑝) −𝑄 𝑗 (𝑝) =
∑
𝑘∼𝑖
(𝑑𝑘 (𝑝) − 𝑙𝑘 (𝑝)) +

∑
𝑘∼𝑗
(𝑣𝑘 (𝑝) − 𝑑𝑘 (𝑝)) > 0,

for all 𝑝 . Since 𝑄𝑖 and 𝑄 𝑗 are decreasing functions, it follows that

𝑝𝑖 > 𝑝 𝑗 . By induction, the conclusion also holds for 𝑖, 𝑗 that are not

adjacent in the rankings. □

What matters for incentives is that performance scores be coun-
terfactually monotonic; meaning, if we were to alter the round

standings, a strategic player will always prefer to place higher:

Lemma 5.3. In any given round, holding fixed the relative rankings
among all players other than 𝑖 (and holding fixed all preceding rounds),
the performance 𝑝𝑖 is a monotonic function of player i’s prior rating
and of player 𝑖’s rank in this round.

Proof. 𝑄𝑖 (𝑝) depends on the prior rating 𝜇𝜋
𝑖
only through the

self-tie term 𝑑𝑖 , which in turn depends only on 𝑝 − 𝜇𝜋
𝑖
. Thus, a

change in 𝜇𝜋
𝑖
has the same effect as an opposite change in 𝑝 . By

Lemma 3.1, 𝑑𝑖 is monotonically increasing in 𝜇𝜋
𝑖
, from which it

follows that 𝑝𝑖 is also monotonically increasing in 𝜇𝜋
𝑖
.

Now, since an upward shift in 𝑖’s ranking can only convert losses

to ties and ties to wins, Lemma 5.1 implies that 𝑝𝑖 is also monotoni-

cally increasing in improvements to 𝑖’s rank. □

Having established the relationship between round rankings

and performance scores, the next step is to prove that, even with

hindsight, players will always prefer their performance scores to

be as high as possible:

Lemma 5.4. Holding fixed the set of contest rounds in which a
player has participated, their current rating is monotonic in each of
their past performance scores.

Proof. The player’s rating is given by the zero of 𝐿′ in Equa-

tion (10). This expression contains the variables 𝛽:, 𝜔:, 𝑝:, and 𝑠 . As

𝑝𝑘 is varied, 𝛽: and𝜔: do not change: although the pseudodiffusions

of Section 4 do modify 𝜔:, these changes are agnostic to 𝑝𝑘 . On the

other hand, 𝐿′(𝑠) is monotonically increasing in 𝑠 and decreasing

in each of the 𝑝𝑘 . Therefore, its zero is monotonically increasing in

each of the 𝑝𝑘 .

This is almost what we wanted to prove, except that 𝑝0 is not

a performance. Due to the pseudodiffusion’s transfer step (or the

actual diffusion, in the case of Elo-MM𝜒), 𝑝0 is a weighted average

of its previous value and the prior rating, and so it is monotonic in

both. Using this same lemma in the previous round as an inductive

hypothesis, it follows that 𝑝0 is monotonic in past performances.

By induction, the proof is complete. □

Finally, we conclude that a rating-maximizing player is always

motivated to improve their round rankings:

Theorem 5.5 (Incentive-compatibility). Holding fixed the set
of contest rounds in which each player has participated, and the
historical ratings and relative rankings among all players other than
𝑖 , player 𝑖’s current rating is monotonic in each of 𝑖’s past rankings.

Proof. Choose any contest round in player 𝑖’s history, and con-

sider improving player 𝑖’s rank in that round while holding every-

thing else fixed. It suffices to show that player 𝑖’s current rating

would necessarily increase as a result.
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In the altered round, by Lemma 5.3, 𝑝𝑖 is increased; and by

Lemma 5.4, player 𝑖’s post-round rating is increased. By Lemma 5.3

again, this increases player 𝑖’s performance score in the following

round. Proceeding inductively, we find that performance scores and

ratings from this point onward are all increased. □

In the special cases of Elo-MM𝜒 or Elo-MMR(∞), the rating sys-

tem is “memoryless”: the only data retained for each player are

the current rating 𝜇𝑖,𝑡 and uncertainty 𝜎𝑖,𝑡 ; detailed performance

history is not saved. In this setting, we present a natural mono-

tonicity theorem. A similar theorem was previously stated for the

Codeforces system, albeit in an informal context without proof [8].

Theorem 5.6 (Memoryless Monotonicity). In either the Elo-
MM𝜒 or Elo-MMR(∞) system, suppose 𝑖 and 𝑗 are two participants of
round 𝑡 . Suppose that the ratings and corresponding uncertainties sat-
isfy 𝜇𝑖,𝑡−1 ≥ 𝜇 𝑗,𝑡−1, 𝜎𝑖,𝑡−1 = 𝜎 𝑗,𝑡−1. Then, 𝜎𝑖,𝑡 = 𝜎 𝑗,𝑡 . Furthermore:

If 𝑖 ≻ 𝑗 in round 𝑡 , then 𝜇𝑖,𝑡 > 𝜇 𝑗,𝑡 .
If 𝑗 ≻ 𝑖 in round 𝑡 , then 𝜇 𝑗,𝑡 − 𝜇 𝑗,𝑡−1 > 𝜇𝑖,𝑡 − 𝜇𝑖,𝑡−1.

Proof. The new contest round will add a rating perturbation

with variance 𝛾2

𝑡 , followed by a new performance with variance 𝛽2

𝑡 .

As a result,

𝜎𝑖,𝑡 =

(
1

𝜎2

𝑖,𝑡−1
+ 𝛾2

𝑡

+ 1

𝛽2

𝑡

)− 1

2

=

(
1

𝜎2

𝑗,𝑡−1
+ 𝛾2

𝑡

+ 1

𝛽2

𝑡

)− 1

2

= 𝜎 𝑗,𝑡 .

The remaining conclusions are consequences of three proper-

ties: memorylessness, incentive-compatibility (Theorem 5.5), and

translation-invariance (ratings, skills, and performances are quanti-

fied on a common interval scale relative to one another).

Since the Elo-MM𝜒 or Elo-MMR(∞) systems are memoryless, we

may replace the initial prior and performance histories of players

with any alternate histories of our choosing, as long as our choice is

compatible with their current rating and uncertainty. In particular,

both 𝑖 and 𝑗 can be considered to have participated in the same

set of rounds, with 𝑖 always performing at 𝜇𝑖,𝑡−1. and 𝑗 always

performing at 𝜇 𝑗,𝑡−1. Round 𝑡 is unchanged.

Suppose 𝑖 ≻ 𝑗 . Since 𝑖’s historical performances are all equal or

stronger than 𝑗 ’s, Theorem 5.5 implies 𝜇𝑖,𝑡 > 𝜇 𝑗,𝑡 .

Suppose 𝑗 ≻ 𝑖 instead. By translation-invariance, if we shift each

of 𝑗 ’s performances, up to round 𝑡 and including the initial prior,

upward by 𝜇𝑖,𝑡−1 − 𝜇 𝑗,𝑡−1, the rating changes between rounds will

be unaffected. Players 𝑖 and 𝑗 now have identical histories, except

that we still have 𝑗 ≻ 𝑖 at round 𝑡 . Therefore, 𝜇 𝑗,𝑡−1 = 𝜇𝑖,𝑡−1 and,

by Theorem 5.5, 𝜇 𝑗,𝑡 > 𝜇𝑖,𝑡 . Subtracting the equation from the

inequality proves the second conclusion. □

5.2 Robust response
Another desirable property inmany settings is robustness: a player’s

rating should not change too much in response to any one con-

test, no matter how extreme their performance. The Codeforces

and TrueSkill systems lack this property, allowing for unbounded

rating changes. Topcoder achieves robustness by clamping any

changes that exceed a cap, which is initially high for new players

but decreases with experience.

When 𝜌 > 0, Elo-MMR(𝜌) achieves robustness in a natural,

smoother manner. To understand how, we look at the interplay

between Gaussian and logistic factors in the posterior. Recall the

notation in Equation (10), describing the loss function and weights.

Theorem 5.7. In the Elo-MMR(𝜌) rating system, let

Δ+ := lim

𝑝𝑡→+∞
𝜇𝑡 − 𝜇𝑡−1, Δ− := lim

𝑝𝑡→−∞
𝜇𝑡−1 − 𝜇𝑡 .

Then, for Δ± ∈ {Δ+,Δ−},

𝜋

𝛽𝑡
√

3

©«𝑤0 +
𝜋2

6

∑
𝑘∈H𝑡−1

𝑤𝑘
ª®¬
−1

≤ Δ± ≤
𝜋

𝛽𝑡
√

3

1

𝑤0

.

Proof. The limits exist, by monotonicity. Using the fact that

0 < 𝑑
𝑑𝑥

tanh(𝑥) ≤ 1, differentiating 𝐿′ in Equation (10) yields

∀𝑠 ∈ R, 𝑤0 ≤ 𝐿′′(𝑠) ≤ 𝑤0 +
𝜋2

6

∑
𝑘∈H𝑡−1

𝑤𝑘 .

Now, the performance at round 𝑡 adds a new term with multiplic-

ity one to 𝐿′(𝑠): its value is 𝜋

𝛽𝑘
√

3

tanh
(𝑠−𝑝𝑘 )𝜋
𝛽𝑘
√

12

. As a result, for every

𝑠 ∈ R, lim𝑝𝑡→±∞ 𝐿′(𝑠) increases by ∓ 𝜋

𝛽𝑡
√

3

, while lim𝑝𝑡→±∞ 𝐿′′(𝑠)
does not change at all. Since we had 𝐿′(𝜇𝑡−1) = 0 without this new

term, after adding the term we have

lim

𝑝𝑡→±∞
𝐿′(𝜇𝑡−1) → ∓

𝜋

𝛽𝑡
√

3

.

Dividing by the former inequalities yields the desired result. □

The proof reveals that the magnitude of Δ± depends inversely
on that of 𝐿′′ in the vicinity of the current rating, which in turn

is related to the derivative of the tanh terms. If a player’s perfor-

mances vary wildly, the tanh terms will be widely dispersed, so

any 𝑠 ∈ R will necessarily be in the tail ends of most of the terms.

Tails contribute very little to 𝐿′(𝑠), enabling a larger rating change.

Conversely, the tanh terms of a player with a very consistent per-

formance history will contribute large derivatives, so the bound on

their rating change will be small.

Thus, Elo-MMR naturally caps the rating changes of all play-

ers, and the cap is smaller for consistent performers. The cap will

increase after an extreme performance, providing a similar “momen-

tum” to the Topcoder and Glicko-2 systems, but without sacrificing

incentive-compatibility (Theorem 5.5).

Let’s compare the lower and upper bound in Theorem 5.7: within

a factor of 𝜋2/6, their ratio corresponds to the normal term’s weight

𝑤0 relative to the total

∑
𝑘 𝑤𝑘 . Recall that 𝜌 is the weight transfer

rate: larger 𝜌 results in more weight being transferred into𝑤0; in

this case, the lower and upper bound tend to stay close together.

Conversely, the momentum effect is more pronounced when 𝜌

is small. In the extreme case 𝜌 = 0, 𝑤0 vanishes for experienced

players, so a sufficiently volatile player would be subject to corre-

spondingly large rating updates.

In general, according to Algorithm 2, the asymptotic steady-

state values of𝑤0 and𝑊 :=
∑
𝑘 𝑤𝑘 must jointly solve the fixpoint

equation

𝑤0 = 𝜅𝑤0 + (𝜅 − 𝜅1+𝜌 ) (𝑊 −𝑤0) .
Rearranging yields an expression for the steady-state ratio:

𝑤0

𝑊
=
𝜅 − 𝜅1+𝜌

1 − 𝜅1+𝜌 .
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If we don’t expect player skill to change too rapidly, then the

system parameters should be set in such a way that 𝜅 ≈ 1. In this

limit, using 1 − 𝜅𝑥 ≈ (1 − 𝜅)𝑥 yields

𝑤0

𝑊
≈ (1 − 𝜅)𝜌
(1 − 𝜅) (1 + 𝜌) =

1

1 + 1/𝜌 .

Thus, the upper bound in Theorem 5.7 is approximately propor-

tional to 1+ 1/𝜌 . Loosely speaking, therefore, the additive term 1/𝜌
may be interpreted as a momentum parameter.

5.3 Runtime analysis and optimizations
Let’s look at the computation time needed to process a round with

participant set P, where we again omit the round subscript. Each

player 𝑖 has a participation historyH𝑖 .

Estimating 𝑃𝑖 entails finding the zero of a monotonic function

with 𝑂 ( |P|) terms, and then obtaining the rating 𝜇𝑖 entails finding

the zero of another monotonic function with 𝑂 ( |H𝑖 |) terms. Using

either of the Illinois or Newton methods, solving these equations

to precision 𝜀 takes 𝑂 (log log
1

𝜀 ) iterations. As a result, the total

runtime needed to process one round of competition is

𝑂

(∑
𝑖∈P
( |P| + |H𝑖 |) log log

1

𝜀

)
.

This complexity is more than adequate for Codeforces-style com-

petitions with thousands of contestants and history lengths up to a

few hundred. Indeed, we were able to process the entire history of

Codeforces on a small laptop in less than half an hour. Nonetheless,

it may be cost-prohibitive in truly massive settings, where |P | or
|H𝑖 | number in the millions. Fortunately, it turns out that both

functions may be compressed down to a bounded number of terms,

with negligible loss of precision.

Adaptive subsampling. In Section 2, we used Doob’s consistency

theorem to argue that our estimate for 𝑃𝑖 is consistent. Specifically,

we saw that 𝑂 (1/𝜀2) opponents are needed to get the typical error

below 𝜀. Thus, we can subsample the set of opponents to include in

the estimation, omitting the rest. Random sampling is one approach.

A more efficient approach chooses a fixed number of opponents

whose ratings are closest to that of player 𝑖 , as these are more likely

to provide informative match-ups. On the other hand, if the setting

requires incentive-compatibility to hold exactly, then one must

avoid choosing different opponents for each player.

History compression. Similarly, it’s possible to bound the number

of stored factors in the posterior. Our skill-evolution algorithm

decays the weights of old performances at an exponential rate.

Thus, the contributions of all but the most recent 𝑂 (log
1

𝜀 ) terms

are negligible. Rather than erase the older logistic terms outright, we

recommend replacing them with moment-matched Gaussian terms,

similar to the transfers in Section 4 with 𝜅𝑡 = 0. Since Gaussians

compose easily, a single term can then summarize an arbitrarily

long prefix of the history.

Substituting 1/𝜀2
and log

1

𝜀 for |P | and |H𝑖 |, respectively, the
runtime of Elo-MMR with both optimizations becomes

𝑂

(
|P |
𝜀2

log log

1

𝜀

)
.

Dataset # contests avg. # participants / contest
Codeforces 1257 3899

Topcoder 2115 391

Reddit 1000 20

CTF 1100 354

DanceSport 18292 6

Synth-large 50 10000

Synth-small 15000 5

Table 1: Summary of test datasets.

If the contests are extremely large, so that Ω(1/𝜀2) opponents
have a rating and uncertainty in the same 𝜀-width bucket as player

𝑖 , then it’s possible to do even better: up to the allowed precision 𝜀,

the corresponding terms can be treated as duplicates. Hence, their

sum can be determined by counting how many of these opponents

win, lose, or tie against player 𝑖 . Given the pre-sorted list of ranks of

players in the bucket, two binary searches would yield the answer.

In practice, a single bucket might not contain enough participants,

so we sample enough buckets to yield the desired precision.

Simple parallelism. Since each player’s rating computation is

independent, the algorithm is embarrassingly parallel. Threads can

read the same global data structures, so each additional thread

contributes only 𝑂 (1) memory overhead.

6 EXPERIMENTS
In this section, we describe experiments on real-world datasets,

mined from several sources that will be described in Section 6.1. We

compare the rating systems described in Section 6.2, on the metrics

of runtime and predictive accuracy, as described in Section 6.3. All

experiments were run on a 2.3 GHz 8-core Skylake machine with

32 GB of memory. Implementations of all rating systems, dataset

mining, and additional processing used in our experiments can be

found at https://github.com/EbTech/Elo-MMR.

Hyperparameter search. To ensure fair comparisons, we ran a

separate grid search for each triple of algorithm, dataset, and metric,

over all of the algorithm’s hyperparameters. The hyperparameter

set that performed best on the first 10% of the dataset, was then

used to test the algorithm on the remaining 90% of the dataset.

6.1 Datasets
Due to the scarcity of public domain datasets for rating systems, we

mined five datasets to analyze the effectiveness of our system. The

datasets were mined using data from each source website’s incep-

tion up to February 5th, 2022. We also created synthetic datasets to

test our system’s performance when the data generating process

matches our theoretical model. Summary statistics of the datasets

are presented in Table 1.

Codeforces contest history. This dataset contains the current en-
tire history of rated contests ever run on codeforces.com, the dom-

inant platform for online programming competitions. The Code-

forces platform has over 1 million registered users, over 400K of

whom are rated, and has hosted over 1000 contests to date. Typically,

each contest has a few thousand participants, takes 2 to 3 hours, and

contains 5 to 8 problems. Players are ranked by total points, with

more points typically awarded for tougher problems and for early

https://github.com/EbTech/Elo-MMR
codeforces.com


WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Aram Ebtekar and Paul Liu

solves. They may also attempt to “hack” one another’s submissions

for bonus points, identifying test cases that break their solutions.

Topcoder contest history. This dataset contains the current en-
tire history of algorithm contests ever run on the topcoder.com.

Topcoder is a predecessor to Codeforces, with over 1.4 million

registered users, and a long history as a pioneering platform for

programming contests. It hosts a variety of contest types, including

over 2000 algorithm contests to date. The scoring system is sim-

ilar to Codeforces, but with shorter rounds: typically 75 minutes

allotted for a set of 3 problems.

SubredditSimulator threads. This dataset contains data scraped
from the current top 1000 most upvoted threads on the website

reddit.com/r/SubredditSimulator. Reddit is a social news ag-
gregation website with over 400 million monthly active users. The

site itself is broken down into sub-sites called subreddits. Users

then post and comment to the subreddits, where the posts and

comments receive votes from other users. In the subreddit Subred-

ditSimulator, users are language generation bots trained on text

from other subreddits. Automated posts are made by these bots to

SubredditSimulator every 3 minutes, and real users of Reddit vote

on the best bot. Each post (and its associated comments) can thus

be interpreted as a round of competition between the bots who

commented.

Capture the Flag competition history. This dataset contains data
scraped from ctftime.org, an archive site for Capture the Flag (CTF)

style computer security contests. Teams are scored based on the

digital “flags" that they find by cracking computer security chal-

lenges. CTFtime tracks over 150K teams and 1000 competitions.

Since these competitions are organized by a variety of groups, they

come in a wide range of sizes.

DanceSport competition history. This dataset contains data scraped
from results.o2cm.com. O

2
CM is the dominant software package

for hosting and managing competitive ballroom dance competitions

in North America. Its freely accessible online database includes an

average of one competition per week. Each competition is divided

into events based on age category, syllabus level, and dance style.

Since these events are judged and ranked separately, we process

them as distinct rounds, in the order listed by O
2
CM. Since model-

ing the chemistry between dance partners is beyond this paper’s

scope, we simply treat each dance couple as a distinct contestant.

Synthetic datasets (small and large). The small and large datasets

contain 1K and 10K players respectively, with skills and perfor-

mances generated according to the logistic generative model in

Section 2. Players’ initial skills are drawn i.i.d. with mean 1500 and

variance 350
2
. Players compete in all rounds, and are ranked ac-

cording to independent performances with variance 200
2
. Between

rounds, we add i.i.d. Gaussian increments with variance 35
2
to each

of their skills. In the small dataset, each round consists of just 5

players. In the large dataset, all 10K players participate in each

round.

6.2 Rating systems
We compare our rating system against several academic and industry-

tested alternatives. For a fairer comparison, we hand-coded efficient

versions of all the algorithms in the safe subset of Rust, parellelized

using the Rayon crate; as such, the Rust compiler verifies that they

contain no data races [33]. The only exception is TrueSkill: the

inherent seqentiality of its message-passing procedure prevented

us from parallelizing it.

Elo-MMR. We specialize our rating system into two types: Elo-

MM𝜒 with a Gaussian performance model, and Elo-MMR(𝜌) with

a logistic performance model and pseudodiffusion rate 𝜌 . We make

use of the optimizations in Section 5.3, bounding both the number

of sampled opponents and the history length by 500.

Topcoder system. The Topcoder website provides not only one

of the oldest dataset of programming competitions, but also one of

the oldest massively multiplayer deployments of a rating system.

The Topcoder system [10] generalizes Glicko-2, and suffers from

the same lack of incentive-compatibility [19]. Close variants of this

system are used by other contest sites, such as CodeChef [1].

Codeforces system. In response to themain drawback of Topcoder,

the Codeforces rating system [8] was specifically designed to be

incentive-compatible. It features more ad hoc choices than the other

systems: for instance, its rating updates target the geometric mean

of a player’s expected and actual ranks. Close variants of this system

are used by other contest sites, such as LeetCode [7].

TrueSkill. We use the improved TrueSkill algorithm of [31], bas-

ing our code on an open-source implementation of the same algo-

rithm. Developed for the purpose of video game matchmaking on

Microsoft’s Xbox Live platform, TrueSkill [25] is a Bayesian rating

system, implemented using a powerful probabilistic programming

framework. Its update rules are rather complex, requiring iterations

of approximate message passing. It’s very effective on games with

moderate numbers of players (typically 2 to 16), but struggles in

our experiments involving hundreds to thousands of players.

Glicko. The Glicko rating system [22] is a classic extension of Elo

which, unlike Glicko-2, is incentive-compatible. While the Bayesian

mathematics of Glicko was derived only for 2-player games, a

naive baseline for 𝑁 -player games can be obtained by decomposing

the game into its 𝑁 2
pairwise matchups (including self-draws).

Since these outcomes are far from independent, we normalize the

collective weight of all 𝑁 updates applying to each player, to match

that of a hypothetical maximally informative 2-player game, i.e.,

against an equally skilled player whose skill is completely certain.

BAR. Bayesian Approximation Ranking [34] shares our goal of

combining the accuracy of TrueSkill with the simplicity of Glicko.

By a judicious application of simplifying approximations, it de-

rives analytical formulas similar to the pairwise decomposition of

Glicko
4
. The normalization in the original paper performs poorly

on our datasets’ large matches. To improve accuracy, just as with

Glicko, we normalize the collective weight of the batched updates

to equal that of one maximally informative 2-player game.

4
Specifically, we use the Bradley-Terry model with full-pair, listed under Algorithm 1

in the source paper [34].

topcoder.com
reddit.com/r/SubredditSimulator
ctftime.org
results.o2cm.com
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6.3 Evaluation metrics
To compare the different algorithms, we define two measures of

predictive accuracy. Each metric will be defined on individual con-

testants in each round, and then averaged:

aggregate(metric) :=

∑
𝑡

∑
𝑖∈P𝑡 metric(𝑖, 𝑡)∑

𝑡 |P𝑡 |
.

Pair inversion metric [25]. Our first metric computes the fraction

of opponents against whom our ratings predict the correct pairwise

result, defined as the higher-rated player either winning or tying:

pair_inversion(𝑖, 𝑡) :=
# correctly predicted matchups

|P𝑡 | − 1

× 100%.

This metric was used in the original evaluation of TrueSkill [25]

and is related to the Kendall’s 𝜏 rank correlation coefficient.

Rank deviation. Our second metric compares the rankings with

the total ordering that would be obtained by sorting players accord-

ing to their prior rating. The penalty is proportional to how much

these ranks differ for player 𝑖:

rank_deviation(𝑖, 𝑡) :=
|actual rank − predicted rank|

|P𝑡 | − 1

× 100%.

In the event of ties, among the ranks within the tied range, we use

the one that comes closest to the rating-based prediction.

6.4 Empirical results
Recall that Elo-MM𝜒 has a Gaussian performance model, matching

the modeling assumptions of Topcoder and TrueSkill. Elo-MMR(𝜌),

on the other hand, has a logistic performance model, matching

the modeling assumptions of Codeforces and Glicko. While 𝜌 was

included in the hyperparameter search, in practice we found that

all values between 0 and 1 produce very similar results.

To ensure that errors due to the unknown skills of new players

don’t dominate our metrics, we excluded players who had competed

in less than 5 total contests. In most of the datasets, this reduced the

performance of our method relative to the others, as our method

seems to converge more accurately. Despite this, we see in Table 2

that both versions of Elo-MMR outperform the other rating systems

in both the pairwise inversion metric and the ranking deviation

metric.

We highlight a few key observations. First, significant perfor-

mance gains are observed on the Codeforces and Topcoder datasets,

despite these platforms’ rating systems having been designed specif-

ically for their needs. Our gains are smallest on the synthetic dataset,

for which all algorithms perform similarly. This might be in part

due to the close correspondence between the generative process

and the assumptions of these rating systems. Furthermore, the

synthetic players compete in all rounds, enabling the system to

converge to near-optimal ratings for every player. Finally, the im-

proved TrueSkill performed well below our expectations, despite

our best efforts to improve it. We suspect that the message-passing

numerics break down in contests with a large number of individual

participants. The difficulties persisted in all TrueSkill implemen-

tations that we tried, including on Microsoft’s popular Infer.NET
framework [30]. To our knowledge, we are the first to present exper-

iments with TrueSkill on contests where the number of participants

is in the hundreds or thousands. One case where TrueSkill outper-

formed is in the DanceSport dataset, where the average number

of participants per contest is just 3. In preliminary experiments,

TrueSkill and Elo-MMR score about equally when the number of

ranks is less than about 60.

Now, we turn our attention to Table 3, which showcases the com-

putational efficiency of Elo-MMR. On smaller datasets, it performs

comparably to the Codeforces, TrueSkill, and Topcoder algorithms.

However, the latter suffer from a quadratic time dependency on the

number of contestants; as a result, Elo-MMR outperforms them by

one to two orders of magnitude on the larger Codeforces dataset.

Finally, in comparisons between the two Elo-MMR variants, we

note that while Elo-MMR(𝜌) is more accurate, Elo-MM𝜒 is always

faster. This has to do with the skill drift modeling described in

Section 4, as every update in Elo-MMR(𝜌) must process 𝑂 (log
1

𝜀 )
terms of a player’s competition history.

6.5 Elo-MMR on small and large contests
The derivation in Section 2 depended on taking a limit in which the

number of participants in each contest went to infinity. In practice,

one might wonder how well Elo-MMR handles smaller contests. To

find out, we simulate what would happen if each Codeforces contest

was administered separately to smaller groups of contestants. That

is, for every chosen contest size 𝑁 , the participants of each contest

are split into groups of at most 𝑁 . Each group is placed in a round,

and ranked according to their relative placement in the original

contest.

In Figure 3, we see that Elo-MMR continues to beat the other

systems, regardless of contest size.

101 102

Contest size
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Figure 3: Number of participants vs. accuracy for various rat-
ing systems.

7 CONCLUSIONS
This paper introduces the Elo-MMR rating system, which is in part

a generalization of the two-player Glicko system, allowing any

number of players. By developing a Bayesian model and taking the

limit as the number of participants goes to infinity, we obtained sim-

ple, human-interpretable rating update formulas. Furthermore, we

saw that the algorithm is incentive-compatible, robust to extreme
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Dataset Codeforces Topcoder TrueSkill Elo-MM𝝌 Elo-MMR(𝝆)
pair inv. rank dev. pair inv. rank dev. pair inv. rank dev. pair inv. rank dev. pair inv. rank dev.

Codeforces 78.9% 14.5% 79.0% 14.4% 70.5% 19.8% 79.0% 14.4% 79.0% 14.4%
Topcoder 72.8% 18.4% 72.5% 18.5% 70.2% 20.0% 73.3% 18.1% 73.2% 18.1%
Reddit 61.5% 27.3% 61.5% 27.3% 61.3% 27.3% 61.6% 27.2% 61.6% 27.2%
CTF 71.1% 20.0% 71.0% 20.1% 70.9% 20.2% 70.6% 20.4% 71.1% 20.0%
DanceSport 71.0% 26.0% 70.9% 26.2% 73.0% 24.5% 72.0% 25.0% 71.8% 25.6%

Synth-large 84.0% 11.1% 84.1% 11.0% 83.3% 11.6% 84.0% 11.1% 84.0% 11.1%

Synth-small 83.4% 15.2% 83.4% 15.2% 83.3% 15.3% 83.6% 15.0% 83.7% 15.0%
Table 2: Performance of each rating system on the pairwise inversion and rank deviation metrics. Bolded entries denote the
best performances (highest pair inv. or lowest rank dev.) on each metric and dataset.

Dataset CF TC TS Elo-MM𝝌 Elo-MMR(𝝆)
Codeforces 1298.3 455.8 260.7 39.4 47.6

Topcoder 26.8 13.8 61.0 13.9 15.3

Reddit 4.6 4.7 4.2 4.7 4.7

CTF 20.1 8.13 39.2 7.4 7.7

DanceSport 74.4 71.0 66.6 73.5 73.8

Synth-Large 10442.0 3024.0 320.3 42.6 37.1
Synth-Small 62.7 60.6 56.0 62.0 61.7

Table 3: Total compute time over entire dataset, in seconds.

performances, asymptotically fast, and embarrassingly parallel. To

our knowledge, our system is the first to rigorously prove all these

properties in a setting with more than two individually ranked

players. In terms of practical performance, we saw that it outper-

forms existing industry systems in both prediction accuracy and

computation speed.

This work can be extended in several directions. First, the choices

we made in modeling ties, pseudodiffusions, teams, and opponent

subsampling are by no means the only possibilities consistent with

our Bayesian model of skills and performances. Second, it may

be possible to further improve accuracy by fitting more flexible

performance and skill evolution models to domain-specific data.

Third, it would be useful to analyze convergence in realistic settings,

where the Bayesian model is not completely accurate. In particular,

controlling long-term rating inflation or deflation is a challenge,

since we can’t directly compare players at different times.

Over the past decade, online competition communities such as

Codeforces have grown exponentially. As such, considerable work

has gone into engineering scalable and reliable rating systems.

Unfortunately, many of these systems have not been rigorously

analyzed in the academic community. We hope that our paper and

open-source release will open new explorations in this area.
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APPENDIX
Lemma 3.1. If 𝑓𝑖 is continuously differentiable and log-concave,

then the functions 𝑙𝑖 , 𝑑𝑖 , 𝑣𝑖 are continuous, strictly decreasing, and

𝑙𝑖 (𝑝) < 𝑑𝑖 (𝑝) < 𝑣𝑖 (𝑝) for all 𝑝.

Proof. Continuity of 𝐹𝑖 , 𝑓𝑖 , 𝑓
′
𝑖
implies that of 𝑙𝑖 , 𝑑𝑖 , 𝑣𝑖 . It’s known [13]

that log-concavity of 𝑓𝑖 implies log-concavity of both 𝐹𝑖 and 1 − 𝐹𝑖 .
As a result, 𝑙𝑖 , 𝑑𝑖 , and 𝑣𝑖 are derivatives of strictly concave functions;

therefore, they are strictly decreasing. In particular, each of

𝑣 ′𝑖 (𝑝) =
𝑓 ′
𝑖
(𝑝)

𝐹𝑖 (𝑝)
− 𝑓𝑖 (𝑝)2

𝐹𝑖 (𝑝)2
, 𝑙 ′𝑖 (𝑝) =

−𝑓 ′
𝑖
(𝑝)

1 − 𝐹𝑖 (𝑝)
− 𝑓𝑖 (𝑝)2

(1 − 𝐹𝑖 (𝑝))2
,

are negative for all 𝑝 , so we conclude that

𝑑𝑖 (𝑝) − 𝑣𝑖 (𝑝) =
𝑓 ′
𝑖
(𝑝)

𝑓𝑖 (𝑝)
− 𝑓𝑖 (𝑝)
𝐹𝑖 (𝑝)

=
𝐹𝑖 (𝑝)
𝑓𝑖 (𝑝)

𝑣 ′𝑖 (𝑝) < 0,

𝑙𝑖 (𝑝) − 𝑑𝑖 (𝑝) = −
𝑓 ′
𝑖
(𝑝)

𝑓𝑖 (𝑝)
− 𝑓𝑖 (𝑝)

1 − 𝐹𝑖 (𝑝)
=

1 − 𝐹𝑖 (𝑝)
𝑓𝑖 (𝑝)

𝑙 ′𝑖 (𝑝) < 0.

□

Theorem 3.2. Suppose that for all 𝑗 , 𝑓𝑗 is continuously differen-
tiable and log-concave. Then the unique maximizer of Pr(𝑃𝑖 = 𝑝 |
𝐸𝐿
𝑖
, 𝐸𝑊

𝑖
) is given by the unique zero of

𝑄𝑖 (𝑝) =
∑
𝑗≻𝑖

𝑙 𝑗 (𝑝) +
∑
𝑗∼𝑖

𝑑 𝑗 (𝑝) +
∑
𝑗≺𝑖

𝑣 𝑗 (𝑝).

Proof. First, we rank the players by their buckets according to

⌊𝑃 𝑗/𝜖⌋, and take the limiting probabilities as 𝜖 → 0:

Pr(⌊
𝑃 𝑗

𝜖
⌋ > ⌊𝑝

𝜖
⌋) = Pr(𝑝 𝑗 ≥ 𝜖 ⌊𝑝

𝜖
⌋ + 𝜖)

= 1 − 𝐹 𝑗 (𝜖 ⌊
𝑝

𝜖
⌋ + 𝜖) → 1 − 𝐹 𝑗 (𝑝),

Pr(⌊
𝑃 𝑗

𝜖
⌋ < ⌊𝑝

𝜖
⌋) = Pr(𝑝 𝑗 < 𝜖 ⌊𝑝

𝜖
⌋)

= 𝐹 𝑗 (𝜖 ⌊
𝑝

𝜖
⌋) → 𝐹 𝑗 (𝑝),

1

𝜖
Pr(⌊

𝑃 𝑗

𝜖
⌋ = ⌊𝑝

𝜖
⌋) = 1

𝜖
Pr(𝜖 ⌊𝑝

𝜖
⌋ ≤ 𝑃 𝑗 < 𝜖 ⌊𝑝

𝜖
⌋ + 𝜖)

=
1

𝜖

(
𝐹 𝑗 (𝜖 ⌊

𝑝

𝜖
⌋ + 𝜖) − 𝐹 𝑗 (𝜖 ⌊

𝑝

𝜖
⌋)

)
→ 𝑓𝑗 (𝑝) .

Let 𝐿𝜖
𝑗𝑝
,𝑊 𝜖

𝑗𝑝
, and 𝐷𝜖

𝑗𝑝
be shorthand for the events ⌊ 𝑃 𝑗

𝜖 ⌋ > ⌊
𝑝
𝜖 ⌋,

⌊ 𝑃 𝑗

𝜖 ⌋ < ⌊
𝑝
𝜖 ⌋, and ⌊

𝑃 𝑗

𝜖 ⌋ = ⌊
𝑝
𝜖 ⌋. respectively. These correspond to a
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player who performs at 𝑝 losing, winning, and drawing against 𝑗 ,

respectively, when outcomes are determined by 𝜖-buckets. Then,

Pr(𝐸𝑊𝑖 , 𝐸𝐿𝑖 | 𝑃𝑖 = 𝑝) = lim

𝜖→0

∏
𝑗≻𝑖

Pr(𝐿𝜖𝑗𝑝 )
∏
𝑗≺𝑖

Pr(𝑊 𝜖
𝑗𝑝 )

∏
𝑗∼𝑖, 𝑗≠𝑖

Pr(𝐷𝜖
𝑗𝑝
)

𝜖

=
∏
𝑗≻𝑖
(1 − 𝐹 𝑗 (𝑝))

∏
𝑗≺𝑖

𝐹 𝑗 (𝑝)
∏

𝑗∼𝑖, 𝑗≠𝑖
𝑓𝑗 (𝑝),

Pr(𝑃𝑖 = 𝑝 | 𝐸𝐿𝑖 , 𝐸
𝑊
𝑖 ) ∝ 𝑓𝑖 (𝑝) Pr(𝐸𝐿𝑖 , 𝐸

𝑊
𝑖 | 𝑃𝑖 = 𝑝)

=
∏
𝑗≻𝑖
(1 − 𝐹 𝑗 (𝑝))

∏
𝑗≺𝑖

𝐹 𝑗 (𝑝)
∏
𝑗∼𝑖

𝑓𝑗 (𝑝),

d

d𝑝
ln Pr(𝑃𝑖 = 𝑝 | 𝐸𝐿𝑖 ,𝐸

𝑊
𝑖 ) =

∑
𝑗≻𝑖

𝑙 𝑗 (𝑝) +
∑
𝑗≺𝑖

𝑣 𝑗 (𝑝) +
∑
𝑗∼𝑖

𝑑 𝑗 (𝑝) = 𝑄𝑖 (𝑝).

Since Lemma 3.1 tells us that 𝑄𝑖 is strictly decreasing, it only

remains to show that it has a zero. If the zero exists, it must be

unique and it will be the unique maximum of Pr(𝑃𝑖 = 𝑝 | 𝐸𝐿
𝑖
, 𝐸𝑊

𝑖
).

To start, we want to prove the existence of 𝑝∗ such that𝑄𝑖 (𝑝∗) <
0. Note that it’s not possible to have 𝑓 ′

𝑗
(𝑝) ≥ 0 for all 𝑝 , as in that

case the density would integrate to either zero or infinity. Thus, for

each 𝑗 such that 𝑗 ∼ 𝑖 , we can choose 𝑝 𝑗 such that 𝑓 ′
𝑗
(𝑝 𝑗 ) < 0, and

so 𝑑 𝑗 (𝑝 𝑗 ) < 0. Let 𝛼 = −∑
𝑗∼𝑖 𝑑 𝑗 (𝑝 𝑗 ) > 0.

Let 𝑛 = |{ 𝑗 : 𝑗 ≺ 𝑖}|. For each 𝑗 such that 𝑗 ≺ 𝑖 , since

lim𝑝→∞ 𝑣 𝑗 (𝑝) = 0/1 = 0, we can choose 𝑝 𝑗 such that 𝑣 𝑗 (𝑝 𝑗 ) < 𝛼/𝑛.
Let 𝑝∗ = max𝑗⪯𝑖 𝑝 𝑗 . Then,∑

𝑗≻𝑖
𝑙 𝑗 (𝑝∗) ≤ 0,

∑
𝑗∼𝑖

𝑑 𝑗 (𝑝∗) ≤ −𝛼,
∑
𝑗≺𝑖

𝑣 𝑗 (𝑝∗) < 𝛼.

Therefore,

𝑄𝑖 (𝑝∗) =
∑
𝑗≻𝑖

𝑙 𝑗 (𝑝∗) +
∑
𝑗∼𝑖

𝑑 𝑗 (𝑝∗) +
∑
𝑗≺𝑖

𝑣 𝑗 (𝑝∗)

< 0 − 𝛼 + 𝛼 = 0.

By a symmetric argument, there also exists some 𝑞∗ for which
𝑄𝑖 (𝑞∗) > 0. By the intermediate value theorem with𝑄𝑖 continuous,

there exists 𝑝 ∈ (𝑞∗, 𝑝∗) such that 𝑄𝑖 (𝑝) = 0, as desired. □
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